ポンプ圧送性評価ソフト

【計算例】

2022年度版

計算例 1:ブームによる圧送
 計算例 2:配管による高強度コンクリートの圧送
 計算例 3:CFT への圧入充填
 計算例 4:測定主油圧から圧送限界の検討

監修 一般社団法人 日本建築学会近畿支部材料施工部会 発行 近畿生コンクリート圧送協同組合

2023年3月

1. 計算例 1:ブームによる圧送

1.1 コンクリート圧送条件

図 1-1 に示すように、3 段ブー ム・21mクラスを用いて、コンクリ ートの設計基準強度 36N/mm²、ス ランプ 21cm のコンクリートを、総 打設量 150m³を 7 時間で圧送する 場合。なお、コンクリートに関する 情報は設計図書のみとする。

図1-1 圧送概要

1.2 入力

(1) コンクリートに関する情報設計基準強度・スランプ値しか分かっていないため、設計図書のみを選択します。

(2) 打設概要・コンクリートの性状

打設部位、生コン車配置、1日の総打設量、1日の実作業時間を入力します。

コンクリート種別、設計基準強度又は呼び強度、スランプ又はスランプフロー、セメント種 別を入力します。

ブーム使用の有無、圧送高さ、ブームの長さ、ポンプ車機種を入力する。圧送高さはブーム 先端の最高高さとします。また、ポンプ車の機種が決まっていない場合は、想定されるブー ム長さのみを入力することで、仮定されているブーム水平換算長で圧送負荷を算出します。 *コンクリートの単位容積重量が2.35 t/m³を超える場合はブームを使用しないで下さい。

(3) 配管状況

ブーム先端のドッキングホース(根元ホース)先端までは、ブーム水平換算長として自動計 算されるので、それ以降の配管状況を入力します。

1.3 計算過程

「計算過程」のボタンを押すと「1. 必要吐出量の算定」、「2. K①、K②値の算定」、「7. 圧送負荷の算定」および「8. 配管の検討」が確認できます。

「2. K①、K②値の算定」において配管径を選択することで、100A、125A それぞれの圧力 損失(K値)が確認できます。(2016年版まではK値を小数点4位以下を切り捨て計算していま したが、今回から四捨五入による算出のため出力値が従前と若干異なる場合があります。) *「8. 配管の検討」ではポンプ車根元圧力で検討しており、ブーム先端に接続している配管ではありま せん。

C:¥Users¥user004¥Desktop¥20	022 hp	pデ−タ予定¥2022	年度版サ	ンプルデー	夕19¥new	計算例1	ブーム.at	u					[- 0	×
摘要計算例	列1:フ	ブーム 2022年	F版												
	入	、力	ックリート	に関する	3情報 み ()調合力	「決定し	ている	0	試験練り	が終わって	いる 〇測	定主油圧から	の検討	
	1	打設部位				普通躯	体	~	13	スランプ語	試験結果	(cm)		0	
□ 計質過程	2	生コン車配置	ì			生コン車	■2台付(t ~	14	スランプフ	7日-試験	結果(cm)		0	
	3	1日の総打調	设数量	(m³)			150		15	単位容積	責質量試	験結果(t/m³)		0	
	4	1日の実作	業時間	(h)			7		16	レフロー初	」速度試	験結果(cm/秒)		0	
🔍 出 カ	5	ブーム使用の	有無			有り		~	· 17	VD-N	充下時間	試験結果		0	
	6	圧送高さ(r	n)				18		18	5ストロー	った要し	5時間(s)		0	
	7	コンクリート種	別			普通コン	シクリート	~	19	主油圧調	け測値(N	l/mm²)		0	
設 正	8	設計基準強	度又は	呼び強度	ŧ	36		~	20	セメント和	重別		N:普通7	ポルトランド	セント
	9	スランプまたは	スランプ) –םל	cm)	21		~	21	ブーム長	さ(m)	_	21		•
😪 設定初期化	10	W/C(%)					0		22	ポンプ機	種	機種選択なし			\sim
	11	単位セメント	量(kg	/m³)			0								
	12	細骨材率 s/	/a (%)			0								
G 14102			地上	配管	鉛直	配管	打設	龆管	×	ーカー			形式		
			100A	125A	100A	125A	100A	125A	1	仕様					
	L:Ē	誓(m)	0	0	0	0	0	42	吐	出量Q	Q1	Q2	Q1	Q2	
	B:/	べント管(本)	0	0	-	-	0	0	吐出	出圧力P	P1	P2	P1	P2	
	T:7	ーパ管(m)	0	0	-	-	1	0	圧	力比			_		_
作 2022/03/09	F:フ	レキ(m)	0	0	-	-	8		径×	<ストローク			最大油圧		
反 18:07:57		1004	Lo=	23		125A	Lo=	42	ブー	山形式			吐出口径		
		ブーム配管	译=	125A	ブームス	k 平換算	€=	67.9	最大	地上高			配管径		
× 1120100									水平	換算長		寸法			
ブーム長さ(m)を選択して下さい。 (マ	マウスクリ	Ϳック又は↑↓で調	黒択しエン	ターキーでる	欠項目)										_

図1-2 入力画面

図1-3 計算過程2画面

1.4 出力

「出力」ボタンを押すと図1-4のように結果が表示されます。 ポンプ車機種をリストから選択すると、選択されたポンプ車の仕様が表示されます。また、選 択されたポンプ車のブームの水平換算長で圧送負荷が再計算され、選択したポンプ車の P-Q線 図と照査し、その圧送可否が判定されます(図1-5)。(従来はK値を切捨て計算していまし たが、今回から四捨五入に変更したため、K値が安全側に若干変更されています。また、必要配 管種別の常用圧力を低圧:2→4N/mm2等に変更しており(図1-6)、従来の中高圧から低圧に 表示が変わるケースがあります。ポンプ機種選定の際、8Bと9Bの標準/高圧を一画面に表示して 4本のP-Q線が表れることがあったが、8B、9Bの選択個々の表示に変更したため、標準と高圧の 2本のP-Q線表示に変更となっています。)

*ブーム使用時は高圧モードでの圧送は禁止です。

C:¥Users¥user004¥Desktop¥20	022 hpデータ予定¥2022年度版サンブルデータ19¥new 計算例1 ブーム.atu		- • •
摘 要 計算	例1:ブーム 2022年版		
	出力	躍定ポンプ機種および圧送の可否	
圖計算過程	必要吐出星 Qd = 37.7 m³/h 圧力損失(K)の推定	ポンプ機種 機種選択なし メーカー 仕様	₩式
🜉 出 カ	100Aでの推定圧力損失 0.025 N/mm ² 125Aでの推定圧力損失 0.020 N/mm ²	吐出量Q Q1 Q2 吐出圧力P P1 P2 圧力比	Q1 Q2 P1 P2
🍓 設 定	圧送貝何(P)の貝定 P = 3.19 N/mm ² ポンプに必要な吐出圧力(Pth)	径×ストローク ブーム形式 最大地上高	最大油圧 吐出口径 配管径
設定初期化	Pth = 1.25 × P = 4.0 N/mm ² ポンプ根元圧力に対する必要配管種別	水平換算長 寸法 (N/mm ²) 101	
開じる	ポンプ根元圧力 3.19 N/mm 必要配管種別 : 低圧 必要ジョイント種別 125A S1 配管・ジョイント検討時表注)	8- 必要 6- 吐 4- 力 2-	
作 成 1807:57 変 2022/06/09 更 1429:03	正送検討書	2 20 40 必要吐出量(60 80 100 m³/h)

図1-4 出力画面1

C:¥Users¥user004¥Desktop¥20)22 hpデータ予定¥2022年度版サンブルデータ19¥new 計算例1 ブーム.atu					
摘 要 計算條	列1:ブーム 2022年版					
🚔 入力	出力	選定ポンプ機利	重および圧送	の可否		
	必要吐出量	ポンプ機種	PY21-60(A)		~
■ 計算過程	$Qd = 37.7 \text{ m}^3/\text{h}$	メーカー	極調	見開発	形式	
	圧力損失(K)の推定	1工1块 98 ~		彩準		
	100Aでの推定圧力損失 0.025 N/mm ²		Q1 81	Q2 114	Q1 4/	Q2 80
🔍 出力	125Aでの推定圧力損失 0.020 N/mm ²	ロ田庄ノル	PI 4.5	PZ 3.0	P1 0.5	PZ 4.0
	圧送負荷(P)の算定	/⊥/)10 ////////////////////////////////////	225	×1650	4 見+油正	27.4
()	P = 2.97 N/mm ²	ゴーム形式	- 22J	☆1050 段7形	10000000000000000000000000000000000000	175
to ax AE	ポンプに必要な叶出圧力(Pth)	最大地上高		79	配管径	1254
	$Pth = 1.25 \times P$	水平換算長	57.1	- 寸法	3.7×2.	5×11.0
設定初期化	= 3.7 N/mm ²	(N/mm ²)		_		
	ポンプ根元圧力に対する必要配管種別	10				•
🦳 閉じる					9B	- 標準
		8-			9B	-局圧
		要 6-				
	20安ノ51ノ19里から、125A S1	/ 出		\geq		
	配督・ジョイント快計時表注意	圧 4-	-			
		2-				
1年 2022/03/09 成 18:07:57						
変 至 14:29:03	正送検討書		20 40	60 80 必要吐出量(m3	100 120 /h)	140 160
1						-

図1-5 出力画面2

図1-6 設定 表-2 画面

図1-7 印刷プレビュー画面

2.1 コンクリート圧送条件

図 2-1 に示す配管状況で、コンクリートの設計基準強度 42N/mm²、スランプ 21cm、総打設 量 100m³のコンクリートを 4 時間で圧送する場合。なお、コンクリートは試験練りが終了して おり、その調合と試験結果を表 2-1 に示す。

コンクリート種別		普通コンクリート
使用セメント種別		普通ポルトランドセメント
呼び強度		42
W/C(%)		38
単位セメント量	(kg/m³)	470
スランプ試験結果	(cm)	21
スランプフロー試験結果	(cm)	38.5
単位容積質量試験結果	(ton/m^3)	2.312
Lフロー初速度試験結果		_
Vロート流下時間試験結果		_

表2-1 コンクリートの概要

2.2入力

- コンクリートに関する情報
 試験練りが終了しているため、「試験練りが終わっている」を選択します。
- (2) 打設概要・コンクリートの性状

打設部位、生コン車配置、1日の総打設量、1日の実作業時間を入力します。

コンクリート種別、設計基準強度又は呼び強度、スランプ又はスランプフロー、W/C、単位 セメント量、スランプ試験結果、スランプフロー試験結果、単位容積質量試験結果を入力し ます。スランプ管理のコンクリートであるため、LフローおよびVロート試験結果は入力不 要です。

*フロー管理のコンクリートでは L フロー初速度試験結果も入力してください。

ブーム使用の有無、圧送高さを入力します。圧送高さは地上から配管の最高高さ(ここでは 42m)とします。また、ポンプ車の機種が決まっていない場合は、ポンプ車機種の入力は不 要です。

(3) 配管状況

計画している配管状況を入力します。

* 圧送負荷算定開始点は、図 2-1 に示すように 150A-125A テーパー管の 150A 側としているため、地上配管のテーパ管欄に「1」を入力してください。

C:¥Users¥user004¥Desktop¥2022	hp	データ予定¥2022	年度版サ	+ンプルデー	夕19¥new	計算例2	配管によ	はる高強度:	コンクリ	J-ŀ	庄送.atu							-	. (- ×
摘要計算例2:	: @c	管による高	後度コン	<i>レ</i> クリート	圧送															
🚎 入力	入	力	ックリート 〇 設計	に関する	5情報 み ()調合力	「決定し	ている	0		式験練りカ	除わ	っている		〇測	ŧ主	油圧	ኮらወ	検討	
	1	打設部位				普通躯	体	`	1	3	スランプ詞	(験結	果(cn	ı)				2	1	
□ 計算:過程	2	生コン車配置	i			生コン車	1台付	յ ի ՝	- 1	4	スランプフ	0-試	験結り	₹(cm)			38	3.5	
	3	1日の総打	设数量	(m³)			100		1	5	単位容積	慣質量	試験約	ま 果(t	/m³)			2.3	312	
	4	1日の実作	業時間	(h)			4		1	6	Lフロー初	速度	式験紀	i果(ci	m/秒)				0	
🔍 出力 🔤	5	ブーム使用の	有無			無し		`	- 1	7	Vロート湯	下時	間試験	結果				- 1	0	
	6	圧送高さ(r	n)				42		1	8	5ストロー	クに要	した時	間(s)				(D	
	7	コンクリート種	別			普通コン	シクリート	`	- 1	9	主油圧計	†測値	(N/m	m²)					0	
🥦 設 定	8	設計基準強	度又は	呼び強度	Ē	42		,	/ 2	0	セメント種	別				N	1:普	通ポル	レトラン	パセン ~
	9	スランプまたは	スランプ) –םל	cm)	21		,	- 2	1	ブーム長さ	≛(m)								
設定初期化 1	0	W/C(%)					38		2	2	ポンプ機利	Ē	F	Y21-6	i0(A)					~
1	1	単位セメント	量(kg	/m³)			470		1											
1	2	細骨材率 s,	/a (%)			37		1											
用じる			地上	配管	鉛直	配管	打設	階配管		x -	-カ-		極朝	開発		Я	形式		ピスト	シ
			100A	125A	100A	125A	100A	125A	仕	様	9B ~		梘	準				高度	E	
L	:直	[管(m)	0	20	0	40	8	14	[±٤	出量Q	Q1	81	Q2	114	Q	1 4	7	Q2	80
B	:^	ント管(本)	0	2	<u>-</u>	-	1	3	머	出	圧力P	P1	4.5	P2	3.0	P	1 6	5	P2	4.6
T	: 7	ーパ管(m)	0	1)-	-	1	0		Æ	力比		e	.1				4.2	2	
作 2022/03/10 F	:71	レキ(m)	0		-	-	7	0	谷	٤×	አኑዐ-ク		225>	<165)	最	大油	Ŧ	27	.4
成 11:09:55		1004	Lo=	35		125A	Lo=	111	ノブ	-1	ム形式		上3	睃Z用	1	٩±	出口	译	17	75
変 2022/07/28									最	大	地上高		2	29		ā	記管谷	5	12	5A
× 11.12.37									水	Ŧ	換算長	57	.1	N	法		3.7>	2.5	×11	.0

図2-2 入力画面

2.3 計算過程

「計算過程」のボタンを押すと「1. 必要吐出量の算定」、「2. K①、K②値の算定」、「4、K ④値の算定」、「7. 圧送負荷の算定」および「8. 配管の検討」が確認できます。

「8. 配管の検討」では、配管の磨耗限界肉厚をチェックする際の参考値として、算定された 圧送負荷時に必要な配管の最小肉厚を、使用されている配管の鋼材種別ごとに算定しています。

*圧力に対してのみの計算結果であり、不適切な支持や機械的な力については考慮されていません。また、繰り返し圧力による金属の疲労や配管の傷・局部的な磨耗についても考慮されていません。

図2-3 計算過程8画面

2.4 出力

「出力」ボタンを押してポンプ車機種をリストから選択すると、算定されたポンプ車に必要な 吐出圧力と選択したポンプ車の P-Q 線図と照査し、その圧送可否が判定されます。吐出圧力が 選択されたポンプ車の能力を超える場合は、「ポンプ車を選定しなおすか入力値を修正して下さ い」というエラーメッセージが表示されます。(ポンプ機種選定の際のP-Q線図は、8B、9Bなど の仕様ごとの表示に変更し、標準と高圧の2本表示に変更。)

 *圧送が「可」と判定された場合でも、P−Q線図と算定されたポンプ車に必要な吐出圧力(図中の
)を比較して、ポンプ車の能力の限界に近い場合は、ポンプ車を選定しなおすか、必要吐出量が小 さくなるように再検討してください。

 	2022 hpデータ予定¥2022年度版サンプルデータ19¥new 計算例2 配管による高強約	変コンクリート圧送.atu		
 ☆ 設定初期化 	出力 必要吐出望 Qd = 67.8 m ³ /h 圧力損失(K)の推定 100Aでの推定圧力損失 0.014 N/mm ² 125Aでの推定圧力損失 0.009 N/mm ² 圧送負荷(P)の算定 P = 2.46 N/mm ² ポンプに必要な吐出圧力(Pth) Pth = 1.25 × P - 3.1 N/mm ²	選定ポンプ機種 ポンプ機種 メーカー 仕様 电出量Q 吐出圧力P 圧力比 径×ストローり ブーム形式 最大地上高 水平換算長	#および圧送の可否 PT70-11(10,12) 極東開発 標準 Q1 42 Q2 73 P1 5.5 P2 2.5 5.0 205×1650 配管車 - 可法 切圧 可 対圧 可 法 回	形式 ビストン 高正 Q1 27 Q2 54 月1 7.9 P2 3.4 马方 3.5 最大油圧 27.4 吐出口径 175 記管径 - 2.55×2.2×7.4 4.ポンプ電車し運
作 2022/03/10 所 11.09.55 変 2022/07/28 更 11.12.57	ボンプ根元圧力に対する必要配管種別 ボンブ根元圧力 : 2.46 N/mm ² 必要記管種別 : 低圧 必要ジョイント種別 : 125A S1	(4) mm J (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	入力値を修正して下さい。 20 40 m 必要吐出量(m	98-標準 98-高圧 98-高圧 98-高圧 98-高圧

図2-4 出力画面1

図2-5 出力画面2

印刷を行う場合は、「印刷プレビュー」ボタンを押し、「印刷」ボタンを押してください。 印刷では、入力した「適用」や打設概要・コンクリートの性状、算定された必要吐出量、圧力 損失の推定値、圧送負荷、ポンプ車根元圧力に対する必要配管種別、必要とされる配管の最小肉 厚、選定したポンプ車の仕様および圧送可否が出力されます。

図2-6 印刷プレビュー画面

3.1 コンクリート圧入条件

図3-1に示す配管状況で、コンクリートの設計基準強度 60N/mm²、スランプフロー60cmの コンクリートを、 φ812,8mm の円形鋼管柱(柱総高さ 72m)に、二度に分けてコンクリートを 圧入充填する。二度目の圧入は、高さ 40m の位置にある圧入口から最上部まで一度に圧入充填す る。なお、コンクリートは試験練りが終了しており、その調合と試験結果を表 3-1に示す。 *CFTでは柱内へのコンクリート充填速度の規定があるため、柱形状によって打設速度が決まります。

図3-1 コンクリート圧入概要

表3-1 コンクリート圧入概要

打設部位	CFT圧入
鋼管形状	円形-φ 812.8
圧入高さ(m)	32
圧送高さ(m)	40

表3-2 コンクリートの概要

コンクリート種別	普通コンクリート
コンクリート 設計基準強度	60
W/C(%)	30
単位セメント量(kg/m ³)	566
スランプフロー(cm)	61.5
コンクリート単位容積重量(t/m ³)	2.4
Lフロー初速度(cm/s)	12.5

3.2入力

- コンクリートに関する情報
 試験練りが終了しているため、「試験練りが終わっている」を選択します。
- (2) 打設概要・コンクリートの性状 打設部位で CFT 圧入を選択します。CFT 圧入を選択すると、入力項目 2~4 がそれぞれ鋼管 形状・鋼管形状2・圧入高さに変わります。
 CFT 圧入充填ではコンクリートの上昇速度が1m/分以下と規定されているため、鋼管形 状・鋼管寸法をリストボックスから選択すると、圧送速度はコンクリート上昇速度が1 m/ 分となるように自動的に計算されます。コンクリート上昇速度を 1m/分以外で圧入する場 合は、鋼管形状で「その他」を選択して打設速度を入力してください。
 その他、入力が必要なコンクリート種別、設計基準強度又は呼び強度、スランプ又はスラン プフロー、W/C、単位セメント量、スランプフロー試験結果、単位容積質量試験結果、L フ ロー初速度試験結果など入力欄が白で項目名の文字が黒く表示されている項目を入力します。
 ポンプ車の機種が決まっていない場合は、ポンプ車機種の入力は不要です。
 *アロー管理のコンクリートであるためスランプ試験結果は入力不要です。
 *圧入高さは、圧入口から圧入完了時のコンクリートへッドまでの高さ(ここでは32m)
 *圧送高さは、ポンプ車から圧入口までの高さ(ここでは40m)
- (3) 配管状況

計画している配管状況を入力します。

*圧送負荷算定開始点は、図 2-1に示すように 150A-125A テーパー管の 150A 側としているため、地上配管のテーパ管欄に「1」を入力してください。

C:¥Users¥user004¥Desktop¥20)22 hpデータ予定¥202	2年度版5	ナンプルデー	夕19¥new	計算例3	CFT圧ス	.atu								E	- (×
摘 要 計算係	列:CFT圧入 202	2年版															
	入力「」	ンクリート 〇 設計	~に関する †図書の	3情報 み ()調合な	が決定し	ている	۲	試験練り	が終わ	วている	5	〇測	主油	圧から	の検討	
	1 打設部位				CFT	圧入	~	13	スランプ語	試験結	果(cn	n)				0	
■ 計算過程	2 鋼管形状				円形			14	スランプフ	10-計	、験結り	<mark>₹(</mark> cm)		(61.5	
	3 打設速度(r	n³ /h)	調管寸法	ţ	29φ-8	12.8	~	15	単位容積	責質量	試験網	詰果(t	/m³)			2.4	
	4 圧入高さ(n	ר)				32		16	Lフロー初	」速度	試験結	課(cr	m/秒)		1	12.5	
🔍 出力	5 ブーム使用の	D有無			無し		~	17	VD-N%	充下時	間試測	余結果				0	
	6 圧送高さ(m)				40		18	5ストロー	クに要	いた時	間(s)				0	
10 = 1 = 1	7 コンクリート利	訠			普通コン	ンクリート		19	主油圧調	†測値	i(N/m	nm²)				0	
🤯 政 ル	8 設計基準備	渡又は	呼び強度	Ē	60		~	20	セメント利	重別				м:	中庸熱	たメント	~ ~
	9 スランプまた(はスランフ) –םלי	cm)	60		~	21	ブーム長	さ(m)							
🚱 設定初期化	10 W/C(%)					30		22	ポンプ機	種	E	3SF20.	07H				~
	11 単位セメント	量(kg	/m³)			566]									
	12 細骨材率 s	/a (%)			0]									
- HUS		地上	配管	鉛直	配管	打設	皆配管	X	ーカー		プッツマ	7779	-	形式	t	ピスト	>
		100A	125A	100A	125A	100A	125A		仕様		梘	票準				-	
	L:直管(m)	0	30	0	40	0	30	吐	出量Q	Q1	32	Q2	71	Q1	-	Q2	-
	B:ベント管(本)	0	1	-	-	0	1	吐出	出 庄力 P	P1	7.9	P2	3.3	P1	-	P2	-
	T:テーパ管(m)	0	1	-	-	0	0	Æ	力比		3	8.9				-	
作 2022/03/10	F:フレキ(m)	0	0	-	-	0	3	径>	< ストローク		200:	×1400)	最大	油圧	3	1
成 11:17:49	100	A Lo=	0		125A	Lo=	125	ブー	·ム形式	4	4段M	形+ Z	形	吐出	口径	18	30
変 2022/06/09								最大	、地上高		1	9.5		配管	會径	12	5A
× 14.27.37								水平	2換算長	39	9.0	Ň	法	3	.2×2	.3×8.	3

図3-2 入力画面

3.3 計算過程

「計算過程」のボタンを押すと「1. 必要吐出量の算定」、「5、K⑤値の算定」、「7. 圧送負荷の算定」および「8. 配管の検討」が確認できます。

「7. 圧送負荷の算定」で、β(圧入口での圧入圧力と液体圧との比率を表す係数。初期設定値は 1.3 となっています)をリストボックスから選択します。

「8. 配管の検討」では、配管の磨耗限界肉厚をチェックする際の参考値として、算定された 圧送負荷時に必要な配管の最小肉厚を、使用されている配管の鋼材種別ごとに算定しています。

* 圧力に対してのみの計算結果であり、不適切な支持や機械的な力については考慮されていません。また、繰り返し圧力による金属の疲労や配管の傷・局部的な磨耗についても考慮されていません。

C:\Users\user004\Desktop\2	022 hpデータ予定\¥2022年度版サンプ川	レデータ19¥new 計算例3	CFT圧入.atu		
摘要計算	例:CFT圧入 2022年版				
	計算過程				
	1、必要吐出量の算定	7、圧送負荷の算定	8、配管の検討		5、K⑤値の算定
圖計算過程					
🜉 出 カ	圧送負荷の算定は、「コン ((社)新都市ハウジング P= K(100A) × L(10	ックリート充填鋼管(C 協会他)に準拠して [。] 00A) + K(125A) >	FT)造技術基準・同解説の 行います。 < L(125A) + 0.01 × い	運用及び計算例等」 Wo × H + B	× 0.01 × Wo × Hc
🍓 設 定	= 0.032 × 0 = 5.46	+ 0.028 × 1	25 + 0.01 × 2.4 ×	40 + 1.3 ~ × 1.3 1.25 1.2 1.15	.01 × 2.4 × 32
設定初期化			P: コンクリ-	-トボンブたか ^{1,15} 1,05 ई負ィ	n(N/mm²)
	$P' = P \times 1$ $= 5.46 \times 1$	25	K(100A): 100A K(125A): 125A	管の水平管1000円方式 管の水平管の管内圧力損	損失(N/mm² /m) 損失(N/mm² /m)
MOU	= 6.8		Wo: フレッシ	ュコンクリートの単位容積的	質量(t/m³)
			H: 圧送局 P': 必要吐	iさ(m) 出圧力(N/mm²)	
			β: 圧入圧力	りと液体圧との比率	
作 <u>成</u> 2022/03/10 11.17.49 変 2022/06/09 更 142757			Hc : 圧入高	iż(m)	
,					

図3-3 計算過程 7 画面

3.4 出力

「出力」ボタンを押してポンプ車機種をリストから選択すると、算定されたポンプ車に必要な吐 出圧力と選択したポンプ車の P-Q 線図と照査し、その圧送可否が判定されます。吐出圧力が選 択されたポンプ車の能力を超える場合は、「ポンプ車を選定しなおすか入力値を修正して下さい」 というエラーメッセージが表示されます。(配管種別の常用圧力を変更しているために、ポンプ 根元圧力が従来と同じでも、必要配管種別が高圧から中高圧に変更となる場合がある。)

* 圧送が「可」と判定された場合でも、P-Q 線図と算定されたポンプ車に必要な吐出圧力(図中の●)を比較して、ポンプ車の能力の限界に近い場合は、ポンプ車を選定しなおすか、必要吐出量が小さくなるように再検討してください。

図3-4 出力画面

圧入計画検討書の印刷を行う場合は、「印刷プレビュー」ボタンを押し、「印刷」ボタンを押して ください。

印刷では、入力した「適用」や打設概要・コンクリートの性状、算定された必要吐出量、圧力 損失の推定値、圧送負荷、ポンプ車根元圧力に対する必要配管種別、必要とされる配管の最小肉 厚、選定したポンプ車の仕様および圧送可否が出力されます。

印刷 閉じる	5	圧迫	<u>ŧ</u> ;	<u> </u>	寸 書							
要 計算例:CFT圧入 202 入力項目	2年版	ポンプ ポンプ 必要語 必要	根元日 根元日 建種 たり	圧力に E力 : 別 : ト種別:	対する必 5.46 中高圧 125A H1	要配管 N/mm	種別 2		本ソ (低) 2011 配曽	フトは配す 圧:2→44 6年版とa と、ジョイン	8種別やジョイント N/mm2、中高圧 と夏記修種別等 小等検討の提は、	・の常用圧力設定を実 :5→8N/mm2)してお が異なる場合があります ご注意ください。
打股部位	C F T 圧入	必要とされ	hañ	管の肉	厚(mm							
间管形状 飼管寸法(mm)	円形 φ-812.8	1210	168.51	scr	CTD	C270	STDC410	CTV4	00	CTVS	00	
打段速度(m3/h)	29	10	0.4	2.0	1	6	1.4	1.4		1.1		
王入高さ(m)	32	10	54	2.5		.9	1.7	1.8	2	1.4		
ブーム使用の有無	無し	41. 710110	-	10000	n a s		/	1 4.0	-	4.14		
王送高さ(m)	40	ホノノ機種	920		の可省				Ten t a			4 (04/0) - 0
コンクリート種別	普通コンクリート	ホシフ機種	BSF	20.07H	a la cia di la cia	7	377729	- 1			ノーム形式	4 Pgm/f8 + Z
良計基準強度又は呼び強度	60	仁様	P±	21 1	吐出庄力	圧力は	t 径×X	10-7	最大	油圧	吐出口径	180
スランプ又はスランプフロー(cm)	60	標準	Q1	32	21 7.9	3.9					最大地上高	19.5
ミメント種別	M:中庸熱セメント		Q2	71	2 3.3		200×	1400	3	81	配置径	125A
V/C(%)	30	-	Q1	- 1	- 10						水半換算長	39.0
			102	- 11	- 2	1					「五 3.	2×2.3×8.3
単位セメント量(kg/m ³)	566		44									
単位セメント量(kg/m ³) 目骨材率s/a(96)	566 0		4e									
単位セメント量(kg/m ³) 冊骨材率s/a(%) スランプ試験結果(cm)	566 0 0		44									
単位セメント量(kg/m ³) 目母材率s/a(%) スランプ試験結果(cm) スランプロー試験結果(cm)	566 0 0 61.5		44									
単位セメント量(kg/m ³) 旧母対率スランプ試験結果(cm) スランプロー試験結果(cm) 単位容積質量試験結果(t/m ³)	566 0 0 61.5 2.4		Q.e									
単位セメント量(kg/m ³) 合発材率s/a(%b) おうンプロレ試験結果(cm) 料位容積質量試験結果(cm) 単位容積質量試験結果(t/m ³) フロー初速度試験結果(cm/形)	566 0 0 61.5 2.4 12.5		Qe.			(81/m	um21					
単位センシト量(kg/m ³) 品優材率s/n(%) おうンプロー試験結果(cm) 単位容積質量試験結果(cm) 単位容積質量試験結果(t/m ³) フロー初速度試験結果(cm/参) /ロー決点下時間試験結果	566 0 61.5 2.4 12.5 0	地上配	1 2 2	100A	125A	(N/m	im²)					
単位センシト量(kg/m ³) 品母対率(/n(%) えランプ試験結果(cm) もランプロー試験結果(cm) 単位容積質量比熱結果(t/m ²) プローが進度は熱結果(cm/を) /ロード進下時間は熱結果	566 0 61.5 2.4 12.5 0	地上配	管)	100A 0	125A 30	(N/m	10 ²)					00 98/10
単位セント量(kg/m ³) 器奏技率く/n(%) (5)ンプロ(統集編(cm) (5)ンプロー試験結果(cm) 単位容積質量比熱結果(/m ³) フロー初速度比熱結果(/m ³) /ロート造下時間試験結果	566 0 61.5 2.4 12.5 0	地上配 L:直管(m B:ペント管	管) (本)	100A 0	125A 30 1	(N/m	16 14					98-標準
#位セジント量(kg/m ³) 用発材率く/m(%) について、(m) (ランプロービ酸結果(cm) は容容質量に移結果((m ²) コロージ連貫(数結果(m ²) コロージ連貫(数結果(m ²)) ロート湾下時間に数結果	566 0 0 61.5 2.4 12.5 0	地上配 L:直営(m) B:ペント管 T:テーパ管	管) (本) (本)	100A 0 0	125A 30 1	(N/m	16 14					98-標準
単位セント優(kg/m ²) 最終末率(A(kb) 52-771(熱格羅(cm) 52-770-試験格羅(cm) 4025務資産目が結果(tm) 270-初速度試験結果(cm)を 770-初速度試験結果(cm/を) 770-初速度試験結果(cm/を) 78-95-85-85-85-85-85-85-85-85-85-85-85-85-85	566 0 0 61.5 2.4 12.5 0	地上配 L:直覧(m) B:ペント管 T:テーパ管 F:フレギ(m)	管) (本) (m)	100A 0 0 0	125A 30 1 1 0	(N/n	16- 14 - 12 -				-	98- 6 1#
単位セジント優(kg/m ³) 需称す率(/n(%) (5)ンプロ(熱熱集(cm)) ちシブローは熟結果(cm) 単位音精質優紅(熱結果(t/m ³)) フローが過来買除結果(cm/%) パロート湾下時間に熱結果 ク要性出量 Qd = 33.3 m ³ /h	566 0 61.5 2.4 12.5 0	地上配 L:画管(m) B:ペント管 T:テーバ管 F:フレキ(m) 知道配	管) (本) (m) 1) 管	100A 0 0 0 100A	125A 30 1 1 0 125A	(N/m 20	16 14 12- 10-				_	· 98-標準
#位センシト催(kg/m ²) 最後打率 / #(kg/m ²) 最後打率 / #(kg/m ²) たジンゴ(Mg格羅(cm) ださう預慮(Mg羅(kg/m ²)) パロー初速度は熟結果(cm/%) パロート湾下時間は熟結果 タ夏吐出星 Qd = 33.3 m 3/h た力損失(K)の推定	566 0 61.5 2.4 12.5 0	地上記 L:直管(m) B:ペンド管 F:フレギ(m) 知道記 L:直管(m)	管) (本) (m)) 管)	100A 0 0 0 100A 0	125A 30 1 1 0 125A 40	(N/m 必要 吐	111 - 12 - 10 - 0				_	· 98-標準
#位セジント優(kg/m ³) 需終末率(A(k)) (5)フブロ(熱除傷(cm)) (5)フガロー試除傷傷(cm)) 地容等確愛自動能構成(cm/秒) 7ロー村造売時間は熱結果 の事 中出星 Qd = 33.3 m ³ /h 生力損失(K)の措定 100Aでの間定力減失 0.	566 0 61.5 2.4 12.5 0	地上配 し:直管(m B:ペント管 F:フレギ(m 知道配 し:直管(m)	管) (本) (m)) 管)	100A 0 0 0 100A 0	125A 30 1 1 0 125A 40	(N/m 必要吐出	11 - 12 - 10 - 8				/	98-標準
単位セジント優(kg/m ³) 需核1率(/n(%) (ボンプ)(数結果(cm) (ボンプ)(数結果(cm) (ボンプ)(力)-試験結果(tm ³) フロー切志度に数結果(cm/物) /ロート湾下時間ば数結果 の ク 要 た が な (加) た の (加) (加) (加) (加) (加) (加) (加) (加)	566 0 61.5 2.4 12.5 0 0 0 2.8 N/mm ² 028 N/mm ²	地上記 に遺言(m B:ペント言 F:フレギ(m 知道記) に遺言(m 打じ(知道 1) 道言(m	管) (本) (m)) 管) 2管)	100A 0 0 100A 0 100A	125A 30 1 1 0 125A 40 125A 30	(N/n 必要吐出田4	111- 12- 10- 8- 6-			<		98-標準
単位セント級(kg/m ²) 最終其率(x/a(kb) 大ジン(試験結果(cm) 大ジン(試験結果(cm) 大ジン(試験結果(cm) ンロー初速度試験結果(cm) レーガ造下時間に結結果 の クロード造下時間に結結果 ク 要性出望 Qd = 33.3 m ³ /h 工力損失(K)の推定 100Aでの指定圧力損失 0. 125AFCの指定に力損失 0. 125AFCの指定	566 0 61.5 2.4 12.5 0 0 0 0 0 N/mm ²	地上記 に通覧(m B:ペント管 F:フレギ(m 知道記) に通覧(m 打設) に通覧(m B:ペント管	管) (本)) 管) (本) (本)	100A 0 0 100A 0 100A 0 0	125A 30 1 1 0 125A 40 125A 30 1	(N/m 必要吐出圧力	111- 112- 10- 8- 6-			<		90-標準
#位セジント優(kg/m ³) 器板工能(A(他) (5)フブロメ総構業(cm) なごろう類様類(cm) なごろう類様類(cm) なごろう類量は熟結業(t/m ³) フローや進下時間は熟結果(cm) 20一小進工防結業(cm/m ³) フローや進下時間は熟結果(cm) 20 この本での推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定圧力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定に力損失 0. 125Aでの推定 0. 125Aでの推定に力損失 0. 125Aでの指 0. 125Aでの指失 0. 125Aでの指定に力損失 0. 125Aでの指 0. 125Aでの指 125Aでの指 125Aでの指 125Aでの指 125Aでの指 125Aでの指 125Aでの指 125Aでの指 125Aでの指 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125Aでの 125A 12	566 0 0 61.5 2.4 12.5 0 0 0 0 0 0 0 0 0 0 0 0 0	地上配 上:直管(m) B:ペント管 F:テレイ(m) 知道間(m) F:乙レ毛(m) D:直覧(m) B:ペント管 T:テー/(第)	管) (本) (m)) 管) (本) (本)	100A 0 0 100A 0 100A 0 0	125A 30 1 1 0 125A 40 125A 30 1 0	(N/m 必要吐出圧力	112 - 12 - 10 - 8 - 4 -			<		98-標準
#位センシト優(kg/m ²) 器材注率(A(a) 25271(熱格果(cm) 25271(熱格果(cm) 25271) 270-初速度は熱環(cm) 地合務項値に除壊(tm ²) 270-初速度は熱環(cm/%) 270-初速度は熱環 (cm/%) 270-初進度な熟練異(cm/%) 270-初進度な熟練 270-初進度 270-初進度 270-70 270	566 0 61.5 2.4 12.5 0 0 0 0 0 0 0 0 0 0 0 0 0	地上記 に適覧(m) B:ペンド電 F:フレギ(m) 知道記 L:適置(m) B:ペンド電 TD2時間 D:適置(m) B:ペンド電 TD2時間 D:つよす(m) D:つよす(m)	管) (本) (m)) 管) (本) (本)	100A 0 0 100A 0 100A 0 0 0 0	125A 30 1 1 0 125A 40 125A 30 1 0 3	(N/m 必要吐出圧力	10- 10- 10- 6- 4- 2-	/		<		98-標準
#位セント優(kg/m ³) 器材率(A(kb) 35271(熱格集(cm) 352710-試験結果(cm) 35270-試験結果(cm) 100-初速度試験結果(cm) 20-初速度試験結果(cm/b) 20-初速度試験結果(cm/b) 20-初速度試験結果(cm/b) 20-初速度式が構成 500-10-10-10-10-10-10-10-10-10-10-10-10-1	566 0 61.5 2.4 12.5 0 0 0 0 0 0 0 0 0 0 0 0 0	地上配 L:画書(m) B:ペント雪 T:テノパ F:フレギ(m) 知道(m) L:画書(m) B:ペント雪 T:テノパ F:フレギ(m)	管) (本) (m)) 管) (本) (本) (m)	100A 0 0 100A 0 100A 0 0 0 0 0	125A 30 1 1 0 125A 40 125A 30 1 0 3 3	(N/m 必要吐出圧力	110 - 12 - 10 - 8 - 4 - 2 -	/		<		98-標準

図3-5 印刷プレビュー画面

4. 計算例4:測定主油圧からの検討

4.1 コンクリート圧送条件

計算例 2と同様のコンクリート・配管条件でコンクリートを打設した時に、表4-1に示すポンプ車を用いて主油圧を測定し、その測定結果から圧力損失を推定して使用したポンプ車での圧送限界を算定します。

*本検討はピストンでの圧送を前提としていますので、スクィーズは選択できません。

表 4-1 使用ポンプ車の仕様

形式	PY120A-36
メーカー	極東開発
仕様	標準−標準
最大吐出圧力(MPa)	4.6
コンクリートシリンダ径× ストロ ーク(mm)	225 × 2100
最大油圧(MPa)	27.4

表 4-2 主油圧ほか測定結果

5ストローク時間(秒)	27.5				
ポンプ主油圧最大値(MPa)	17				

図 4-1 コンクリート圧送概要

コンクリート種別		普通コンクリート
使用セメント種別		普通ポルトランドセメント
呼び強度		42
W/C(%)		38
単位セメント量	(kg/m ³)	470
スランプ試験結果	(cm)	21
スランプフロー試験結果	(cm)	38.5
単位容積質量試験結果	(ton/m³)	2.312
Lフロー初速度試験結果		-
Vロート流下時間試験結果		_

表 4-3 コンクリートの概要

4.2入力

- (1) コンクリートに関する情報「測定主油圧からの検討」を選択します。
- (2) 打設概要・コンクリートの性状 打設部位、生コン車配置、1日の総打設量、1日の実作業時間を入力します。
 コンクリート種別、設計基準強度又は呼び強度、スランプ又はスランプフローおよび単位容 積質量試験結果を入力します。
 *単位容積質量が未入力の場合は、ソフトで設定している単位容積質量で計算します。
- (3) 使用ポンプ車、配管状況

使用したポンプ車の機種、ブーム使用の有無、圧送高さおよび配管状況を入力します。 圧送の仕様が9B(標準)と8B(高圧)の2種類ある機種では、その仕様をプルダウンメ ニューで選択します。

⑧ Ct¥Users¥user004¥Desktop¥2022 hpデータ予定¥2022年度版サンブルデータ19¥new 計算例4 測定主油圧からの検討.atu																		
摘要 計算例4:測定主油圧からの検討 2022年版																		
スカ コンクリートに関する情報 ○ 設計図書のみ ○ 調合が決定している ○ 試験練りが終わっている ◎ 測定主油圧からの検討																		
	1 打設部位				普通躯	体	~	13 スランプ試験結果(cm)						0				
□ 計質:8和	2 生コン車配置	1			生コン車	■1台付(<i>;</i> t ∼	14	4 スランプフロー試験結果(cm)					0				
	3 1日の総打					100		15 単位容積質量試験結果(t/m ³)					2.312					
	4 1日の実作	業時間	(h)			4		16	16 L70-初速度試験結果(cm/秒)					0				
🔍 出力	5 ブーム使用の	有無			無し		~	17	17 VD-卜流下時間試験結果					0				
	6 圧送高さ(r	n)				42		18	5ストロ-	ークに要した時間(s)					27.5			
	7 コンクリート種					ンクリート	~	19	主油圧	計測値(N/mm²)					19			
🤁 設 定	8 設計基準強	設計基準強度又は呼び強度			42		~	20 セメント種別					N:普通ポルトランドセ> ~					
	9 スランプまたは	プまたはスランプフロー(cm)			21		~	21 ブーム長さ(m)										
設定初期化	10 W/C(%))				0		22 ポンプ機種 PY120A-36					~					
	11 単位セメント量 (kg/m ³)					0												
	12 細骨材率 s/a (%) 0																	
B108		地上	配管	鉛直	配管	打設	皆配管		*		極	開発		形式	t	ピスト	シ	
		100A	125A	100A	125A	100A	125A	仕様	₿ 9B ~		梘	票準			高	圧		
	L:直管(m)	0	20	0	40	8	14	04	出量Q	Q1	55	Q2	120	Q1	35	Q2	85	
	B:ベント管(本)	0	2	-	-	1	3	吐	出圧力P	P1	4.6	P2	2.5	P1	6.6	P2	3.5	
	T:テーパ管(m)	0	1	-	-	1	0	E	E力比	6.0				4.2				
作 2022/03/10	F:フレキ(m)	0	0	-	-	7	0	径:	×አኑዐ-ク		225;	×210	D	最大	油圧	27	.4	
成 11:17:49	1004	100A Lo = 35					111	ブー	-ム形式	4 段M形				吐出口径		17	75	
変 2022/06/09									最大地上高 35.6				配管径 125A		5A			
× 14.20.41								水平	2換算長	6	1.9	<u> </u>	J法	3	.6×2.	5×11	.9	
更 14:26:41								水平	2換算長	6	1.9	<u>,</u>	İ法	3	.6×2.	5×11	.9	

図 4-2 入力画面

4.3計算過程

「計算過程」のボタンを押すと「1.実吐出量の算定」、「6.測定主油圧からの検討」および 「9. 圧送限界」が確認できます。

「6. 測定主油圧からの検討」では、圧送時の運転モード(標準/高圧)を選択してください。 *高圧、もしくは標準の圧送の2つのモードがある場合、適宜モードを選択する。

◎ C+UJsers¥user004¥Desktop¥2022 hpデータ予定¥2022年度版サンブルデータ19¥new 計算例4 測定主油圧がらの検討.atu	• ×							
摘要 計算例4:測定主油圧からの検討 2022年版								
計算過程 1. 実出量の算定 9. 圧送限界								
■ 計算過程 主油圧測定結果より推定 k: 圧力損失推定値(N/mm ²)								
レロ P - (k1 + k2) P:計測時吐出圧力(N/mm²) K= Lo k1:ポンプ約匹力損失(N/mm²) - 3.2 - (0.281 + 0.971) - 0.012 (50tb)る圧力(N/mm²) - 0.012	2) プ							
行員重((7/m ²)) 年 0.00353 × 47.8 + 0.1118 = 0.281 H: 庄送高さ(m) H: 庄送高さ(m) k 2 = 0.01 × Wo × H Qd: 実吐出量 (m ³ /h)								
回問じる = 0.01 × 2.312 × 42 = 0.971 圧力比: ポンゴ仕様一覧表より								
P = Pn/圧力比= 19.0 / 6.0 = 3.2 ポンプ仕様 標準 ▼								
a = 1.798 + -0.03695 × SL + 0.007635 × Qd								
= 1.798 + -0.03695 × 21 + 0.007635 × 47.8 = 1.387								
作 2022/03/10 Lo = a × Lo(100A) + Lo(125A) + ブーム水平換算長 変 2022/06/09 = 1.387 × 35.0 + 111.0 + = 159.5								

図 4-3 計算過程6 画面

「9. 圧送限界」では、上階で圧送を行う際の想定される配管を入力してください。

◎ CYUSersYuser004VDesktopV2022 hpデータ予定V2022年度版サンブルデータ19Vnew 計算例4 測定主油圧からの検討.atu								
摘要 計算例4:測定主油圧からの検討 2022年版								
計算過程 1、東吐出量の算定 6、測定主油匠からの検討	9、圧達限界							
■ 計算過程 Hmax = p max - K+Lh K + 0.01Wo	想走配管 地上 打設階 L:直管(m) 20 22							
日本 10.012 × 10.012 × 10.012 × 10.012 × 0.012 × 0.012 × 0.012 × 0.01 × 10.012 × 0.01 × 10.012 × 0.01 × 10.012 × 0.01 × 10.012 × 0.01 × 10.012 × 0.01 × 10.012 × 0.	106.0 B: ペント管(本) 2 4 1: デーパ管(m) 1 1 2.312 F: フレ≠(m) 0 7							
● 設 定 = 68.6 125Lmax = Pmax ÷ 1.25K	100Lmax = Pmax ÷ 1.25gK							
三 設定初期化 = 4.6 ÷ (1.25 × 0) = 306.7	$\begin{array}{cccc} 0.12 \end{array}) & = & \hline 4.6 & \div & (1.25 \times 1.387 \times 0.012 \end{array}) \\ & = & \hline 221.1 \end{array}$							
開じる Hmax:使用しているポンプで同じコンクリートを同じ吐出量で打設する場合の圧送限界高さ(m) Lh: 想定される地上降と打設解の配管長さ(m) Pmax:使用ポンプの最大理論吐出圧力(N/mm ²) pmax:25%の安全率を考慮した最大吐出圧力(N/mm ²) pmax=Pmaxx100/125(N/mm ²)								
K: 圧力損失推定値(N/mm ² /m) 6,で求めた値 Wo: コングリートの単位容積質量(t/m ³) 125Lmax: 使用しているホンプで同じコングリートを同じ吐出量で打設する場合の圧送限界距離(m) 但し、転送智法全1254.ペンド管・フレキジブルホースの使用はなく、再低差ちないものとする。								
成 1117/49 100Lmax: 住田にいてはオンマ信 しい読者は全 する100 変 2022/06/09 a: 125A嘗に対する100 更 1426:41 4 4	ルコンカリートを同じ吐出量で打設する場合の圧送限界距離(m) ていひん・ストピーフルギブルースの使用はな、高低差もないものとする。 A管の圧力損失比 6,で求めた値							

図4-4 計算過程9画面

4.4 出力

出力ボタンを押すと、主油圧測定結果から推定された圧力損失と、その時使用したポンプ車で 同一のコンクリートを同一の圧送速度で圧送できる圧送限界が出力されます。また、グラフ(P-Q線図)には、測定時の吐出圧力と吐出量がプロットされます。

図 4-5 出力画面

x

圧送検討書C+VUsersNuser004WDesktopW2022 hpデータ予定W2022年度版サンブルデータ19Wnew 計算例4 測定主油圧からの検討.atu ED限1 閉じる <u> 圧送検討書</u> 圧送限界 摘要 計算例4:測定主油圧からの検討 2022年版 高さHmax = 68.6 m 想定配管(125A) 地上 39.0m 打設階 67.0m 水平 125Lmax = 306.7 m 100Lmax = 221.1 m 入力項目 打設部位 普通躯体 輸送管は全て125Aまたは100A、ベント管・フレキシブルホースの使用はなく、 高低差もないものとする 生コン車配置 1日の総打設数量(m³) 生コン車1台付け 100 1日の実作業時間(h) ブーム使用の有無 ブーム使用の有無 圧送高さ(m) 無し ポンプ機種および圧送の可否 42 ンプ機種 PY120A-36 枢東開発 ビストン 仕様 吐出量 吐出圧力 圧力比 径×ストローク 最大油圧 ブーム形式 4 段M形 コンクリート種別 設計基準強度又は呼び強度 普通コンクリート 吐出口径
 株工量
 は出田力

 標準
 (1)
 55
 P1
 4.6

 Q2
 120
 P2
 2.5

 再圧
 Q1
 35
 P1
 6.6

 Q2
 85
 P2
 3.5

 標準
 Q1
 45
 P1
 5.6

 Q2
 100
 P2
 2.8

 高圧
 Q1
 30
 P1
 7.9

 高圧
 Q2
 70
 P2
 4.0
 175 42 35.6 125A 最大地上高 スランプ又は、 セメント種別 ップ又はスランプフロー(cm) 21 6.0 配管径 普通ポルトランドセメント N : 27.4 9B 225×2100 水平換算長 61.9 4.2 寸法 3.6×2.5×11.9 4.9 88 205×2100 27.4 3.5 (N/mm²) 地上配管 100A 125A L:直管(m) 0 20 B:ベント管(本) 0 2 T:テーバ管(m) 0 1 10 5ストロークに要した時間(s) 主油圧計測値(N/mm²) 27.5 ---- 98-積準 19 8 実吐出量 F:7レキ(m) 0 0 Qd = 47.8m 3/h 必要吐出圧力 鉛直配管 100A 125A 6 主油圧計測値 L:直管(m) 0 40 19.0 N/mm² 打設階配管 100A 125A 4 L:直管(m) 8 14 B:ペント管(本) 1 3 T:テーバ管(m) 1 0 F:フレキ(m) 7 0 計測時吐出圧力 P = Pn / 圧力比 = 19.0 / 6.0 = 3.2 N/mm² 2 F:70+(m) 圧力損失(K)の推定
 100A
 125A

 水平換算長
 35
 111
 主油圧測定結果より推定 K = 0.012 N/mm²/m 60 80 100 120 140 160 40 20 実吐出量(m3/h)

図4-6 印刷プレビュー画面